

A brief introduction to gene drives

Keith R Hayes CSIRO Environmental and ecological risk team

CSIRO Data61 www.csiro.au

Natural gene drive mechanisms

Gene drives

• Mechanisms that cause genetic elements to be inherited at super-Mendelian rates

Natural mechanisms

- Transposable elements
- Maternal Effect Dominant Embryonic Arrest (MEDEA)
- Homing Endonuclease genes
- Cytoplasmic incompatibility
- Cytoplasmic male sterility
- Meiotic drive
- Underdominance

Characteristics of gene drives (Sinkins and Gould, 2006)

Characteristic	Classes of potential drive systems				
	Transposable elements	Natural meiotic drive	Engineered meiotic drive or HEG	Engineered underdominance	Wolbachia
ls a release threshold required before population spread begins?	No	No	No	Comparatively high	Usually low
ls efficiency of drive dependent on insert size?	Yes	No	No; unknown for HEGs	No	No
ls there a mechanism for repeated spread?	Different transposable elements might be required	No	Redesign of target sequence	Different promoters and suppressors	Incompatible strains
Can insect tissue-specific promoters be used?	Yes	Yes	Yes	Yes	No
ls there a mechanism for transgene removal from the population?	No	No	Redesign of target sequence	Large-scale release of wild- type insects	Incompatible strains
ls there a risk of spread to non- target species?	Low	Close to zero	Close to zero	Close to zero	Low
ls the system known to function in important pest species?	Yes	Yes, but insensitivity 🤇 alleles occur	No	No	Yes
Is there a potential use for the same system in secondary vectors?	Yes	Unlikely	Yes	Yes	Yes

CSIRC

CRISPR game changer

Keith Hayes, 3rd IWAB, Virginia, June 2017: Slide 4 of 12

Why would we deploy this technology?

KEES WHO, checkelin-beack with, Kasamirashie et al. 180 million 37 (spinnal privat action (in) Hier Webschannen org Woogpostskoll, Universitier and Eventerinary 708UOI, Packer et al. Net org/10.1038/12642/69793; Alessandro De Maddalona. All calculations have wide arror margins.

Population suppression or alteration with CRISPR-Cas9

Source: Saey (2015)

Gene drive in randomly mating population (Unckless et al., 2015)

Frequency of transgenic allele q depends on conversion rate c, fitness cost s, and fitness cost dominance in heterozygotes (h = 1 dominant, h = 0 recessive) :

$$q' = \left[\underbrace{q^2(1-s)}_{\text{Homozygotes}} + \underbrace{q(1-q)(1-c)(1-hs)}_{\text{Unconverted heterozygotes,}} + \underbrace{q(1-q)2c(1-s)}_{\text{Converted heterozygotes}}\right] \bar{w}^{-1}$$

When allele is rare $q^2 \simeq 0$ and $\bar{w} \simeq 1$ so

$$q' = q^2(1 - s_e)$$

 $s_e = hs(c - 1) + (1 - 2s)c$

Which means that deleterious allele can spread so long as

$$c > hs/(1 - 2s + hs)$$

Recessive female-sterile gene drive in An. gambiae

Source: Hammond et al. (2016)

CSIRC

Immunity To Drive in Flour Beetles (Drury et al., 2017)

CRISPR-Offcuts (Schaefer et al., 2017)

a

CRISPR-treated F05 WGS Strelka 777 50 104 1,696 349 88 2,895 Mutect

b

Variant type	CRISPR-treated F03 mouse	CRISPR-treated F05 mouse	Identical variants in CRISPR-treated mice
WGS SNVs	1,736	1,696	1,397
WGS indels	164	128	117
Exon SNVs	60	51	39
Exon indels	6	3	2
Nonsynonymous protein coding	26	18	15
Top 50 predicted sit	es 0	0	0

References

- Drury, D. W., Siniard, D. J., Zentner, G. E., and Wade, M. J. (2017). Crispr/cas9 gene drives in genetically variable and non-randomly mating wild populations. *Science Ad*, 3:e1601910.
- Hammond, A. Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, K., Gribble, M. Baker, D., Marois, E. Russell, S., Burt, A., Windbichler, N., Crisanti, A., and T., N. (2016). A crispr-cas9 gene drive system targeting female reproduction in the malaria mosquito vector *Anopheles gambiae*. *Nature Biotechnology*, 34:78–83.
- Saey, T. H. (2015). Gene drives unleashed. Science New, December 12:16-20.
- Schaefer, K. A., Wu, W. H., Colgan, D. F., Tsang, S. H. Bassuk, A. G., and Mahajan, V. B. (2017). Unexpected mutations after crisprcas9 editing in vivo. *Science*, 14:547–548.
- Sinkins, S. P. and Gould, F. (2006). Gene dirve systems for insect disease vectors. *Nature Reviews Geneti*, 7:427–435.
- Unckless, R. L., Messer, P. W., Connallon, T., and Clark, A. G. (2015). Modeling the manipulation of natural populations by the mutagenic chain reaction. *Genetics*, 201:425–431.

Thank You

CSIRO Data61

Keith R. Hayes

- t +61 3 6232 5260
- e Keith.Hayes@csiro.au
- w http://people.csiro.au/H/K/Keith-Hayes

CSIRO Data61 www.csiro.au